Study Title:

The protective role of glutathione in osteoarthritis.

Study Abstract

It is currently understood that osteoarthritis (OA) is a major chronic inflammatory musculoskeletal disease. While this disease has long been attributed to biomechanical trauma, recent evidence establishes a significant correlation between osteoarthritic progression and unbridled oxidative stress, responsible for prolonged inflammation. Research describes this as a disturbance in the balanced production of reactive oxygen species (ROS) and antioxidant defenses, generating macromolecular damage and disrupted redox signaling and control. Since ROS pathways are being considered new targets for OA treatment, the development of antioxidant therapy to counteract exacerbated oxidative stress is being continuously researched and enhanced in order to fortify the cellular defenses. Experiments with glutathione and its precursor molecule, N-acetylcysteine (NAC), have shown interesting results in the literature for the management of OA, where they have demonstrated efficacy in reducing cartilage degradation and inflammation markers as well as significant improvements in pain and functional outcomes. Glutathione remains a safe, effective and overall cheap treatment alternative in comparison to other current therapeutic solutions and, for these reasons, it may prove to be comparably superior under particular circumstances.

Methods: Literature was reviewed using PubMed and Google Scholar in order to bring up significant evidence and illustrate the defensive mechanisms of antioxidant compounds against oxidative damage in the onset of musculoskeletal diseases. The investigation included a combination of keywords such as: oxidative stress, oxidative damage, inflammation, osteoarthritis, antioxidant, glutathione, n-acetylcysteine, redox, and cell signaling.

Conclusion: Based on the numerous studies included in this literature review, glutathione and its precursor N-acetylcysteine have demonstrated significant protective effects in events of prolonged, exacerbated oxidative stress as seen in chronic inflammatory musculoskeletal disorders such as osteoarthritis.

Study Information

J Clin Orthop Trauma. 2020 Sep 9;15:145-151. doi: 10.1016/j.jcot.2020.09.006. PMID: 33717929; PMCID: PMC7920102.

Full Study

https://pubmed.ncbi.nlm.nih.gov/33717929/