Study Title:

The inhibitory effect of pyrroloquinoline quinone on the amyloid formation and cytotoxicity of trunc

Study Abstract

Parkinson's disease (PD) involves the selective damage of dopaminergic neuron cells resulting from the accumulation and fibril formation of alpha-synuclein. Recently, it has been shown that not only full-length alpha-synuclein, but also C-terminal truncated forms exist in the normal brain, as well as Lewy bodies, which are cytoplasmic inclusions in PD. It is known that truncated alpha-synuclein has a much higher ability to aggregate and fibrillate than full-length alpha-synuclein. Since the fibrils and precursor oligomers of alpha-synuclein are cytotoxic to the neuron, inhibitors that prevent the formation of oligomers and/or fibrils might open the way to a novel therapeutic approach to PD. However, no inhibitor for truncated alpha-synuclein has been reported yet.
In this study, we first characterized the aggregation and cytotoxicity of C-truncated alpha-synuclein119 and alpha-synuclein133 which have been found in both the normal and the pathogenic brain. Alpha-synuclein119 aggregated more rapidly and enhanced significantly the fibril formation of alpha-synuclein. Although both of alpha-synuclein119 and alpha-synuclein133 showed a high cytotoxicity, alpha-synuclein133 showed a similar aggregation with full-length alpha-synuclein and no acceleration effect. We showed that PQQ dramatically inhibits the fibril formation of C-terminal truncated alpha-synuclein110119, and 133 as well as the mixtures of full-length alpha-synuclein with these truncated variants. Moreover, PQQ decreases the cytotoxicity of truncated alpha-synuclein.
Our results demonstrate that PQQ inhibits the amyloid fibril formation and cytotoxicity of the C-truncated alpha-synuclein variants. We believe that PQQ is a strong candidate for a reagent compound in the treatment of PD.

Study Information

The inhibitory effect of pyrroloquinoline quinone on the amyloid formation and cytotoxicity of truncated alpha-synuclein
Mol Neurodegener.
2010 May

Full Study