HEALTH NEWS
Study Title:
Mitochondrial Mg(2+) homeostasis decides cellular energy metabolism and vulnerability to stress
Study Abstract
Cellular energy production processes are composed of many Mg(2+) dependent enzymatic reactions. In fact, dysregulation of Mg(2+) homeostasis is involved in various cellular malfunctions and diseases. Recently, mitochondria, energy-producing organelles, have been known as major intracellular Mg(2+) stores. Several biological stimuli alter mitochondrial Mg(2+) concentration by intracellular redistribution. However, in living cells, whether mitochondrial Mg(2+) alteration affect cellular energy metabolism remains unclear. Mg(2+) transporter of mitochondrial inner membrane MRS2 is an essential component of mitochondrial Mg(2+) uptake system. Here, we comprehensively analyzed intracellular Mg(2+) levels and energy metabolism in Mrs2 knockdown (KD) cells using fluorescence imaging and metabolome analysis. Dysregulation of mitochondrial Mg(2+) homeostasis disrupted ATP production via shift of mitochondrial energy metabolism and morphology. Moreover, Mrs2 KD sensitized cellular tolerance against cellular stress. These results indicate regulation of mitochondrial Mg(2+) via MRS2 critically decides cellular energy status and cell vulnerability via regulation of mitochondrial Mg(2+) level in response to physiological stimuli.
Study Information
Sci Rep . 2016 Jul 26;6:30027. doi: 10.1038/srep30027.Full Study
https://pubmed.ncbi.nlm.nih.gov/27458051/Recent News
Behind the Buzz: Alcohol’s Hidden Impact on Gut Health
Quercetin Phytosome & Luteolin: Dynamic Duo for Immune Health and Longevity
Nerve Nutrients for Comfort, Balance, and Neuroprotection
The Power of PEA: Feel Better, Think Sharper, Sleep Deeper
Collagen Peptides and Keratin: Building Blocks for Joints, Bones, and Skin