HEALTH NEWS
Study Title:
Impact of Cholesterol Metabolism in Immune Cell Function and Atherosclerosis.
Study Abstract
Cholesterol, the most important sterol in mammals, helps maintain plasma membrane fluidity and is a precursor of bile acids, oxysterols, and steroid hormones. Cholesterol in the body is obtained from the diet or can be de novo synthetized. Cholesterol homeostasis is mainly regulated by the liver, where cholesterol is packed in lipoproteins for transport through a tightly regulated process. Changes in circulating lipoprotein cholesterol levels lead to atherosclerosis development, which is initiated by an accumulation of modified lipoproteins in the subendothelial space; this induces significant changes in immune cell differentiation and function. Beyond lesions, cholesterol levels also play important roles in immune cells such as monocyte priming, neutrophil activation, hematopoietic stem cell mobilization, and enhanced T cell production. In addition, changes in cholesterol intracellular metabolic enzymes or transporters in immune cells affect their signaling and phenotype differentiation, which can impact on atherosclerosis development. In this review, we describe the main regulatory pathways and mechanisms of cholesterol metabolism and how these affect immune cell generation, proliferation, activation, and signaling in the context of atherosclerosis.
Study Information
Nutrients. 2020 Jul 7;12(7):2021. doi: 10.3390/nu12072021. PMID: 32645995; PMCID: PMC7400846.Full Study
https://pubmed.ncbi.nlm.nih.gov/32645995/Recent News
Behind the Buzz: Alcohol’s Hidden Impact on Gut Health
Quercetin Phytosome & Luteolin: Dynamic Duo for Immune Health and Longevity
Nerve Nutrients for Comfort, Balance, and Neuroprotection
The Power of PEA: Feel Better, Think Sharper, Sleep Deeper
Collagen Peptides and Keratin: Building Blocks for Joints, Bones, and Skin