Nobiletin and tangeretin offer unique mitochondrial protection to nerve cells

Byron's Comments:

helping mitochondria function better under stress is vital for cell survival.

Study Title:

Mild mitochondrial depolarization is involved in a neuroprotective mechanism of Citrus sunki peel extract.

Study Abstract:

Mitochondrial membrane potential (∆Ψm ) contributes to determining a driving force for calcium to enter the mitochondria. It has been demonstrated that even a small mitochondrial depolarization is sufficient to prevent mitochondrial calcium overload and the subsequent apoptosis. Therefore, mild mitochondrial depolarization has been recently evaluated as a novel mechanism of neuroprotection via inhibiting neurotoxic mitochondrial calcium overload during neuronal insults. In the present study, using both real-time recording and flow cytometric analyses of ∆Ψm , we demonstrated that ethanolic peel extract of Citrus sunki Hort. ex Tanaka (CPE) and its active compounds are capable of inducing a mild mitochondrial depolarization. Polymethoxylated flavones such as nobiletin and tangeretin were found as the active compounds responsible for CPE effects on ∆Ψm . Neuronal viability was significantly increased in a dose-dependent manner by CPE treatment in H2 O2 -stimulated HT-22 cells as an in vitro neuronal insult model. CPE treatment significantly inhibited H2 O2 -induced apoptotic processes such as chromatin condensation, caspase 3 activation and anti-poly (ADP-ribose) polymerase (PARP) cleavage. CPE treatment significantly blocked mitochondrial calcium overload in H2 O2 -stimulated HT-22 neurons as indicated by rhod-2 acetoxymethyl ester. Taken together, our findings suggest that CPE and its active compounds may be considered as promising neuroprotective agents via inducing a mild mitochondrial depolarization.

Study Information:

Wu JJ, Cui Y, Yang YS, Jung SC, Hyun JW, Maeng YH, Park DB, Lee SR, Kim SJ, Eun SY. Mild mitochondrial depolarization is involved in a neuroprotective mechanism of Citrus sunki peel extract. Phytother Res.  2013 April  ;27(4):564-71
Department of Physiology, Jeju National University School of Medicine, 66 Jejudaehakno, Jeju-si, Jeju-do, Republic of Korea.

Most Popular News:

Connect with Wellness Resources:

Connect on Facebook Follow us on Twitter Wellness Resources on Pinterest Wellness Resources YouTube Channel Get RSS News Feeds
Thyroid and Metabolism