Study Title:

The disruption of L-carnitine metabolism by aluminum toxicity and oxidative stress promotes dyslipid

Study Abstract

L-Carnitine is a critical metabolite indispensable for the metabolism of lipids as it facilitates fatty acid transport into the mitochondrion where β-oxidation occurs. Human astrocytes (CCF-STTG1 cells) and hepatocytes (HepG2 cells) exposed to aluminum (Al) and hydrogen peroxide (H₂O₂), were characterized with lower levels of L-carnitine, diminished β-oxidation, and increased lipid accumulation compared to the controls. γ-Butyrobetainealdehyde dehydrogenase (BADH) and butyrobetaine dioxygenase (BBDOX), two key enzymes mediating the biogenesis of L-carnitine, were sharply reduced during Al and H₂O₂ challenge. Exposure of the Al and H₂O₂-treated cells to α-ketoglutarate (KG), led to the recovery of L-carnitine production with the concomitant reduction in ROS levels. It appears that the channeling of KG to combat oxidative stress results in decreased L-carnitine synthesis, an event that contributes to the dyslipidemia observed during Al and H₂O₂ insults in these mammalian cells. Hence, KG may help alleviate pathological conditions induced by oxidative stress.

Study Information


The disruption of L-carnitine metabolism by aluminum toxicity and oxidative stress promotes dyslipidemia in human astrocytic and hepatic cells
Toxicol Lett.
2011 June

Full Study

http://www.ncbi.nlm.nih.gov/pubmed/21439360