Study Title:

Resveratrol and Blueberries Boost Vitamin D Immune Function

Study Abstract

Scope
The cathelicidin antimicrobial peptide (CAMP) gene is induced by 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), lithocholic acid, curcumin, nicotinamide, and butyrate. Discovering additional small molecules that regulate its expression will identify new molecular mechanisms involved in CAMP regulation and increase understanding of how diet and nutrition can improve immune function.

Methods and results
We discovered that two stilbenoids, resveratrol and pterostilbene, induced CAMP promoter-luciferase expression. Synergistic activation was observed when either stilbenoid was combined with 1α,25(OH)2D3. Both stilbenoids increased CAMP mRNA and protein levels in the monocyte cell line U937 and synergy was observed in both U937 and the keratinocyte cell line, HaCaT. Inhibition of resveratrol targets sirtuin-1, cyclic AMP production and the c-Jun N-terminal, phosphoinositide 3 and AMP-activated kinases did not block induction of CAMP by resveratrol or synergy with 1α,25(OH)2D3. Nevertheless, inhibition of the extracellular signal regulated 1/2 and p38 mitogen-activated protein kinases, increased CAMP gene expression in combination with 1α,25(OH)2D3 suggesting that inhibition of these kinases by resveratrol may explain, in part, its synergy with vitamin D.

Conclusion
Our findings demonstrate for the first time that stilbenoid compounds may have the potential to boost the innate immune response by increasing CAMP gene expression, particularly in combination with 1α,25(OH)2D3.

From press release:

In an analysis of 446 compounds for their the ability to boost the innate immune system in humans, researchers in the Linus Pauling Institute at Oregon State University discovered just two that stood out from the crowd -- the resveratrol found in red grapes and a compound called pterostilbene from blueberries.



Both of these compounds, which are called stilbenoids, worked in synergy with vitamin D and had a significant impact in raising the expression of the human cathelicidin antimicrobial peptide, or CAMP gene, that is involved in immune function.

The findings were made in laboratory cell cultures and do not prove that similar results would occur as a result of dietary intake, the scientists said, but do add more interest to the potential of some foods to improve the immune response.

The research was published today in Molecular Nutrition and Food Research, in studies supported by the National Institutes of Health.

"Out of a study of hundreds of compounds, just these two popped right out," said Adrian Gombart, an LPI principal investigator and associate professor in the OSU College of Science. "Their synergy with vitamin D to increase CAMP gene expression was significant and intriguing. It's a pretty interesting interaction."

Resveratrol has been the subject of dozens of studies for a range of possible benefits, from improving cardiovascular health to fighting cancer and reducing inflammation. This research is the first to show a clear synergy with vitamin D that increased CAMP expression by several times, scientists said.

The CAMP gene itself is also the subject of much study, as it has been shown to play a key role in the "innate" immune system, or the body's first line of defense and ability to combat bacterial infection. The innate immune response is especially important as many antibiotics increasingly lose their effectiveness.

A strong link has been established between adequate vitamin D levels and the function of the CAMP gene, and the new research suggests that certain other compounds may play a role as well.

Stilbenoids are compounds produced by plants to fight infections, and in human biology appear to affect some of the signaling pathways that allow vitamin D to do its job, researchers said. It appears that combining these compounds with vitamin D has considerably more biological impact than any of them would separately.

Continued research could lead to a better understanding of how diet and nutrition affect immune function, and possibly lead to the development of therapeutically useful natural compounds that could boost the innate immune response, the researchers said in their report.

Despite the interest in compounds such as resveratrol and pterostilbene, their bioavailability remains a question, the researchers said. Some applications that may evolve could be with topical use to improve barrier defense in wounds or infections, they said.

The regulation of the CAMP gene by vitamin D was discovered by Gombart, and researchers are still learning more about how it and other compounds affect immune function. The unique biological pathways involved are found in only two groups of animals -- humans and non-human primates. Their importance in the immune response could be one reason those pathways have survived through millions of years of separate evolution of these species.

Study Information

Chunxiao Guo, Brian Sinnott, Brenda Niu, Malcolm B. Lowry, Mary L. Fantacone, Adrian F. Gombart.
Synergistic induction of human cathelicidin antimicrobial peptide gene expression by vitamin D and stilbenoids.
Molecular Nutrition & Food Research
2013 September
Oregon State University.

Full Study