Study Title:

Dietary vitamin D deficiency and Brain Damage

Study Abstract

In addition to the well-known effects of vitamin D (VitD) in maintaining bone health, there is increasing appreciation that this vitamin may serve important roles in other organs and tissues, including the brain. Given that VitD deficiency is especially widespread among the elderly, it is important to understand how the range of serum VitD levels that mimic those found in humans (from low to high) affects the brain during aging from middle age to old age. To address this issue, 27 male F344 rats were split into three groups and fed isocaloric diets containing low (100 IU/kg food), control (1000 IU/kg food), or high (10,000 IU/kg food) VitD beginning at middle age (12 months) and continued for a period of 4–5months. We compared the effects of these dietary VitD manipulations on oxidative and nitrosative stress measures in posterior brain cortices. The low-VitD group showed global elevation of 3-nitrotyrosine compared to control and high-VitD-treated groups. Further investigation showed that this elevation may involve dysregulation of the nuclear factor κ-light-chain enhancer of activated B cells (NF-κB) pathway and NF-κB-mediated transcription of inducible nitric oxide synthase (iNOS) as indicated by translocation of NF-κB to the nucleus and elevation of iNOS levels. Proteomics techniques were used to provide insight into potential mechanisms underlying these effects. Several brain proteins were found at significantly elevated levels in the low-VitD group compared to the control and high-VitD groups. Three of these proteins, 6-phosphofructokinase, triose phosphate isomerase, and pyruvate kinase, are involved directly in glycolysis. Two others, peroxiredoxin-3 and DJ-1/PARK7, have peroxidase activity and are found in mitochondria. Peptidyl–prolyl cis–trans isomerase A (cyclophilin A) has been shown to have multiple roles, including protein folding, regulation of protein kinases and phosphatases, immunoregulation, cell signaling, and redox status. Together, these results suggest that dietary VitD deficiency contributes to significant nitrosative stress in brain and may promote cognitive decline in middle-aged and elderly adults.

From press release:

A new study led by University of Kentucky researchers suggests that a diet low in vitamin D causes damage to the brain.

In addition to being essential for maintaining bone health, newer evidence shows that vitamin D serves important roles in other organs and tissue, including the brain. Published in Free Radical Biology and Medicine, the UK study showed that middle-aged rats that were fed a diet low in vitamin D for several months developed free radical damage to the brain, and many different brain proteins were damaged as identified by redox proteomics. These rats also showed a significant decrease in cognitive performance on tests of learning and memory.

"Given that vitamin D deficiency is especially widespread among the elderly, we investigated how during aging from middle-age to old-age how low vitamin D affected the oxidative status of the brain," said lead author on the paper Allan Butterfield, professor in the UK Department of Chemistry, director of the Center of Membrane Sciences, faculty of Sanders-Brown Center on Aging, and director of the Free Radical Biology in Cancer Core of the Markey Cancer Center. "Adequate vitamin D serum levels are necessary to prevent free radical damage in brain and subsequent deleterious consequences."

Previously, low levels of vitamin D have been associated with Alzheimer's disease, and it's also been linked to the development of certain cancers and heart disease. In both the developed world and in areas of economic hardship where food intake is not always the most nutritious, vitamin D levels in humans are often low, particularly in the elderly population. Butterfield recommends persons consult their physicians to have their vitamin D levels determined, and if low that they eat foods rich in vitamin D, take vitamin D supplements, and/or get at least 10-15 minutes of sun exposure each day to ensure that vitamin D levels are normalized and remain so to help protect the brain.

Study Information

Jeriel T.R. Keeney, Sarah Förster, Rukhsana Sultana, Lawrence D. Brewer, Caitlin S. Latimer, Jian Cai, Jon B. Klein, Nada M. Porter, D. Allan Butterfield.
Dietary vitamin D deficiency in rats from middle to old age leads to elevated tyrosine nitration and proteomics changes in levels of key proteins in brain: Implications for low vitamin D-dependent age-related cognitive decline
Free Radical Biology and Medicine
2013 December
Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky.

Full Study