Manganese and Osteoporosis

Byron's Comments:

A lack of manganese is not good for your bones.

Study Title:

Alternative hypothesis for the origin of osteoporosis: The role of Mn

Study Abstract:

Antlers represent an ideal experimental model for bone biology studies, because of their easy accessibility, and their rapid growth. Findings from our previous studies revealed that Mn plays an essential role in incorporating the circulating bone Ca to the growing antlers. Based on these findings, we hypothesize that Mn, an essential mineral for Ca fixation (or incorporation) into bones, might be released from bone, during its remodeling, to be available for prioritized function, most likely, brain function; Consequently, Ca incorporation will be dramatically affected, leading to osteoporosis, particularly in elderly people. Therefore, osteoporosis would precede brain malfunctioning diseases such as Alzheimer’s or Parkinson’s, and clinical data are available to support some of the predictions derived from this hypothesis.

From press release:

The loss of manganese could mean that calcium does not stick to bones and could cause osteoporosis. This is the new theory put forward by researchers at the University of Castilla-La Mancha (UCLM) in Spain after studying deer antlers. The hypothesis published this month in the Frontiers of Bioscience journal still needs to be confirmed by the scientific community.


Through the study of deer antlers, researchers of the Research Institute of Hunting Resources (IREC, joint centre UCLM-CSIC-JCCM) suggest that the origin of osteoporosis could not be directly linked to the lack of calcium but rather to the lack of a mineral essential to calcium absorption. In particular they believe that this could be manganese, according to a new theory published in the latest issue of the ‘Frontiers of Bioscience’ journal.

According to Tomás Landete, sub-director of the IREC and one of team’s researchers, “previous antler studies show that manganese is necessary for calcium absorption. Our hypothesis is that when the human body absorbs less manganese or when it is sent from the skeleton to other organs that require it, such as the brain, the calcium that is extracted at the same time is then not properly absorbed and is excreted in the urine. It is in this way that osteoporosis can slowly strike.”

The theory must now be validated with more studies and medical trials but its creators believe that it is a “step in a totally new direction in osteoporosis research as it considers calcium loss to be a consequence of the disease and not the origin.”

The idea for the new proposal came from a dramatic increase in antler breakages seen in Spain in 2005. When scientists analysed these antlers in detail, they realised that weakening was due to manganese depletion caused by the deer’s diet. That year saw an intensely cold winter which in turn caused plants to reduce their manganese concentrations in response to such stress.

“Antlers grow by transferring 20% of the skeleton’s calcium towards their structure. We therefore saw that it was not calcium deficiency that caused the weakening but rather the deficiency of manganese,” clarifies Landete. “The lack of manganese was almost as if the ‘glue’ that sticks calcium to antlers bones was missing.”

Links to Alzheimer’s and Parkinson’s Disease

In the case of humans, the researchers suggest that manganese is extracted from the bones when it is required by the “most important” organs, such as the brain. The researcher adds that “maintaining the bones is important, but even more so is sustaining the working of the brain, which uses 25% of our energy intake when at rest.”

The team also points out that when this vital mineral runs out after the onset of osteoporosis, conditions like Alzheimer’s disease, Parkinson’s disease, and senile dementia could strike. To put this theory to the test, they analysed data from 113 patients who were operated on for osteoporosis and osteoarthritis (wear and tear of joint cartilage) at Hellín Hospital in Albacete, Spain between 2008 and 2009. Some 40% of those operated on for osteoporosis showed some form of cerebral dysfunction whereas this was not the case in any of the 68 patients operated on for osteoarthritis.

Furthermore, the percentage increased with age and only amongst those patients with osteoporosis. The exhaustion of manganese reserves could be behind the bone disease and the cerebral degeneration. “We are collecting human bones to confirm this. However, studies on rats in which Alzheimer’s disease has been induced by aluminium intoxication show that as the severity of this disease increases, manganese levels in the bones decrease,” says Landete.

The researcher also recalls studies that link manganese to Parkinson’s disease and show that astrocytes, which provide support to neurons, have specific enzymes that require manganese. In any case, researchers outline that their theory “is not a final solution to such diseases but constitutes the first step in a new direction”—a new direction that requires validation and confirmation from the scientific community.

Study Information:

Tomas Landete-Castillejos Alternative hypothesis for the origin of osteoporosis: The role of Mn Frontiers in Bioscience 2012 January E4, 1385-1390.
University of Castilla-La Mancha (UCLM) in Spain.




Related Entries: Astonishing Benefits of Cranberries
Summer Heat Stress – More Than Just Dehydration
Chronic Active Epstein Barr Virus: Additional Tools for the Battle
Pine Nut Oil Reduces Inflammation, Clotting Risk, and Fatty Liver Congestion
New Findings with Epstein Barr Virus: The Sleeping Giant
Type 1 Diabetes: Risk Factor Alert
Disrupted Gut Clocks Linked with IBS, GERD, Obesity, and Other GI Concerns
Body Clocks and Weight Management – It’s All About Timing
Saturated Fat Myth – Debunked Again
Powerful Nutrition for Common Chemical Exposures
Endocrine Disruptor Compounds and Natural Solutions
Endocrine Disruptor Compounds and Your Hormones
Low Blood Pressure Linked with Brain Atrophy
Vitamin K, Leptin, AGEs, and Arthritis
Advanced Solutions for Osteoarthritis
Osteoarthritis: Good Oils versus Bad Oils and Inflammation
High Levels of Omega 6 Fatty Acids Found in Bones of Osteoarthritis Patients Worsens Joint Breakdown
Lipoic Acid Protects the Heart and Immune System from Acute Emotional Stress
Whiplash, Thyroid, and Adrenals
Brain Inflammation Now Documented in Chronic Fatigue Syndrome
Brain Protective Effects of Proathocyanidins
Nutrient Highlight: Discover the Best Form of Folate
Lutein and Zeaxanthin Offset Gene Weaknesses that Cause Macular Degeneration
Lycopene Builds Its Anti-Prostate Cancer Case
Carotenes Improve the Quality of Semen
Vitamin B12 as Methylcobalamin Repairs Nerves & Lowers Pain
Folic Acid Activates Neural Stem Cells for Brain Rejuvenation
Chromium Improves Insulin Function & Reduces Binge Eating
How Fiber and Niacin Protect Against Colon Inflammation and Cancer
Berries Have Anti-Aging Impact on Immune System
Strawberries Reduce Cardiovascular Risk
Friendly Flora Improves Fatty Liver Disease
Flavonoid Intake Improves Cardio Health in At-Risk Men
Polyphenols and Essential Fatty Acids Reduce Cardio Risk in Overweight People
Vitamin C Reduces the Risk for Hemorrhagic Stroke
Testosterone Therapy Increases Heart Attack Risk
Magnesium Intake Linked to Lower Cardiovascular Inflammation
Q10 Boosts Energy, Nerves, Muscles & Metabolism
Coenzyme Q10 Remarkably Improves Circulation
Tyrosine Helps Maintain Mental Ability Under Stress
Green Tea Extract Lowers Blood Pressure, Cholesterol, Blood Sugar & Inflammation
Poor Flexibility is a Sign of Stiff Arteries
A Sluggish Lymph System Causes Snoring & Sleep Apnea
DHA is Vital to Cardiovascular Wellness
Magnesium Supplements Lower Blood Pressure, Prevent Calcification
Magnesium for the Prevention of Heart Disease
Pomegranate Protects HDL Cholesterol from Damage
Pomegranate Blocks Flu Replication
Tocotrienols:  Twenty Years of Dazzling Cardiovascular and Cancer Research
Is Resveratrol the Fountain of Youth?
Grape Seed Extract Lowers Blood Pressure
Scientists Tout Resveratrol as a Primary Nutrient for Cardio Health
Leptin, Thyroid, and Weight Loss
Excess Appetite Causes Abdominal Fat
Low Energy? Detect Thyroid Related Fatigue
Curcumin Boosts AMPK Activation, Prevents Fatty Liver
Quercetin Activates Mitochondrial Biogenesis
Quercetin Guards Against Inflammation-Induced Bone Loss
Head Injuries Double or Triple the Risk of Early Death
Fatty Fish Consumption Lowers the Risk of Type 2 Diabetes by 33%
Flavonoids Continue to Show Potent Diabetes Prevention
Vitamin K2 Decreases Bone Loss in Postmenopausal Women
Cissus Quadrangularis Enhances Fracture Healing
Cissus Quadrangularis Reduces Exercise-Related Joint Pain
Nobiletin and Tangeretin Help Protect Against Bone Loss
Nobiletin and Tangeretin Inhibit Respiratory Virus
Oregano Oil Inhibits Biofilm Formation
Bromelain Helps Chronic Sinus Inflammation
Curcumin Demonstrates Potent Anti-Flu Properties
Quercetin Protects Brain and Body from Low Oxygen Stress
Ubiquinol Q10 Protects Against Magnified Tissue Injury
Ubiquinol Q10 Protects Eyes of Diabetic Patients
Limonene Promotes Healing of Digestive Lining
Magnesium Intake Reduces Mortality
Fiber is Vital for Cardio Health
Friendly Flora Boosts Weight Loss in Obese Women
Tocotrienols Help Correct Fatty Liver in Humans
Vitamin E Boosts Quality of Life for Alzheimer’s Patients
Astaxanthin Demonstrates Brain Protection & Rejuvenation
Top 10 Health Stories of 2013
Resveratrol’s Amazing Anti-Aging Effect on Circulation
Grape Seed Extract Normalizes Blood Pressure in Mild Hypertension Patients
Don’t Let Bacterial Infections Set Up Shop
Viral Replication Fueled by Sugar
Anti-Vitamin Propaganda Hits a Fever Pitch
Antacid Medications Cause Vitamin B12 Deficiency, Speed Aging
Men Should Take Folic Acid Prior to Conception to Prevent Birth Defects
Exercise Potently Reduces the Risk for Diseases of Aging
Fisetin Demonstrates Potent Bone Protection Properties
Green Tea (EGCG) Improves Body Weight and Autoimmune Arthritis
Low Midlife Iron Contributes to Declining Cognitive Function in Women
DHA Reduces Inflammation in Brains of Alzheimer’s Patients
Low Magnesium Linked to Poor Vitamin D Status
Vitamin D Lowers Depression and Nerve Pain in Women with Type 2 Diabetes
Adequate Vitamin D is Needed to Prevent Brain Damage
Nutrition Makes Anti-Aging Possible: Secrets of Your Telomeres
Acetyl-L-Carnitine and Lipoic Acid Rejuvenate Stressed Mitochondria
Low DHA and EPA Linked to Major Depression and Anxiety
Higher Dose DHA and EPA Reduce Infection Toxins


Most Popular News:


Connect with Wellness Resources:

Connect on Facebook Follow us on Twitter Wellness Resources on Pinterest Wellness Resources YouTube Channel Get RSS News Feeds
Telecourse
bookstore
Thyroid and Metabolism
podcast
autoship