High Glycemic Diets Induce Fatty Liver

Byron's Comments:

Too many refined carbohydrates cause insulin resistance that promotes fatty liver.

Study Title:

Hepatic steatosis and increased adiposity in mice consuming rapidly vs. slowly absorbed carbohydrate.

Study Abstract:

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is fast becoming a major public health concern, coincident with the increasing prevalence of obesity. Although lifestyle greatly influences development of NAFLD, the specific dietary causes remain largely unknown. The purpose of this study was to determine whether a diet high in rapidly absorbed carbohydrate (RAC) vs. slowly absorbed carbohydrate (SAC), controlled for confounding dietary factors, causes NAFLD in mice with similar body weight. An animal model was chosen because of logistical and ethical challenges to conducting this study in humans.

RESEARCH METHODS AND PROCEDURES: Male 129SvPas mice were fed diets high in either RAC (amylopectin; high glycemic index) or SAC (amylose; low glycemic index) for 25 weeks. Diets were controlled for macronutrient and micronutrient content, differing only in starch type. Body weight and composition were measured throughout the study. Hepatic and plasma triacylglycerol concentrations were quantified at the end of the study.

RESULTS: Body weight was not significantly different between the two groups. However, total body adiposity increased twice as much, in absolute terms, in the mice fed RAC vs. SAC (12.2 +/- 2.9% vs. 6.1 +/- 4.2%, p < 0.0001). Hepatic triacylglycerol content was 2-fold greater in the RAC group (20.7 +/- 9.4 vs. 9.6 +/- 4.9 mg/g, p = 0.01). In addition, plasma insulin and triacylglycerol concentrations were higher in the RAC group.

DISCUSSION: A diet high in RAC causes accumulation of fat in liver, adipose tissue, and plasma in mice. Therefore, a low glycemic index diet may help prevent or treat NAFLD in humans.

From press release:

Diets rich in rapidly-digested carbohydrates not only expand waistlines, but may also cause fatty liver, a condition that can lead to liver failure and death, finds a new study in mice.

If confirmed in humans, the findings suggest that fatty liver disease—on the upsurge among Americans as a byproduct of the obesity epidemic—may be preventable and possibly treatable through dietary changes.

The researchers, led by David Ludwig, MD, PhD, director of the Optimal Weight for Life program at Children’s Hospital Boston,  fed mice either a high- or a low-glycemic index diet. High-glycemic index foods, including white bread, white rice, most prepared breakfast cereals and concentrated sugar, raise blood sugar quickly. Low-glycemic index foods, like most vegetables, fruits, beans and unprocessed grains, raise blood sugar slowly.

On the high-glycemic index diet, mice ate a type of cornstarch that is digested quickly whereas on the low-glycemic index diet, mice ate a type of cornstarch that is digested slowly. The diets had equal amounts of total calories, fat, protein, and carbohydrate, and the mice were otherwise treated identically.

After six months, the mice weighed the same. However, mice on the low-glycemic index diet were lean, with normal amounts of fat in throughout their bodies. Mice on the high-glycemic index diet had twice the normal amount of fat in their bodies, blood and livers.

When sugar melts out of high-glycemic index food, Ludwig explains, it drives up production of insulin, which tells the body to make and store fat. Nowhere is this message felt more strongly than in the liver, because the pancreas, which makes insulin, dumps the hormone directly into the liver, where concentrations can be many times higher than in the rest of the body. Fat buildup in the liver, or fatty liver, is usually symptomless, but it increases the risk for liver inflammation, which can progress to hepatitis and, in some cases, liver failure.

Fatty liver is becoming more common in Americans, especially in children, says Ludwig. Many cases in adults can be explained by alcoholism, but not the pediatric cases. Where just one case of fatty liver was reported in children in 1980, now between 1 in 4 and 1 in 2 overweight American children are estimated to have the condition. As these millions of children age, some will progress to full-blown liver disease.

“This is a silent but dangerous epidemic,” says Ludwig. “Just as type 2 diabetes exploded into our consciousness in the 1990s, so we think fatty liver will in the coming decade.”

A previous study found that Italians who ate higher-glycemic index diets had fattier livers, but the study wasn’t tightly controlled. The new study makes clear that the type of carbohydrate can cause fatty liver in animals, independent of other elements of diet or lifestyle.

“Our experiment creates a very strong argument that a high-glycemic index diet causes, and a low-glycemic index diet prevents, fatty liver in humans,” says Ludwig.

Ludwig and colleagues now hope to confirm this in a just-launched clinical trial—and to show that a low-glycemic index diet can reverse fatty liver in overweight children. The children, aged 8 to 17, will be randomized to either the low-glycemic diet or a low-fat diet.

Low-fat diets are currently the standard treatment, Ludwig says, but many children with fatty liver don’t respond to them. “We think it is a misconception that the fat you’re eating goes into the liver,” he says.

Ludwig hypothesizes that obesity, sedentary lifestyles and increased consumption of refined carbohydrates are “synergistically” fueling a fatty liver epidemic in children. Ironically, low-fat diets have only made matters worse, replacing fat with sugar or starchy foods that actually increase fat deposition in the body.

“Two low-fat Twinkies, billed as a health food, contain the same amount of sugar as an oral glucose tolerance test—a test used to determine how much sugar someone can digest,” Ludwig says. He notes that the French delicacy pate de fois gras—the fatty liver of a duck or goose—is produced by over-feeding the animals with high-glycemic index grains.

Study Information:

Scribner KB, Pawlak DB, Ludwig DS. Hepatic steatosis and increased adiposity in mice consuming rapidly vs. slowly absorbed carbohydrate. Obesity 2007 September 15(9):2190-9.
Children's Hospital Boston, Department of Medicine, 333 Longwood Avenue, Boston, MA 02115, USA.

Full Study:

http://www.nature.com/oby/journal/v15/n9/full/oby2007260a.html


Related Entries: Glaucoma: Protecting Against a Silent, Devastating Disorder
Protect and Energize Your Immune System
GMOs, Roundup, and Sunscreen Linked with Diminished Brain Resiliency
Signs of Concussions and Mild Traumatic Brain Injury
Sleep – Molecular Clean Up Time for the Brain
Artificial Sweeteners Provoke High Risk for Diabetes
Hypothyroidism, Brain Stress, and Season Changes
Alcohol, Adolescents, and Young Adults – A Neurological Disaster Waiting to Happen
GABA: Managing Brain Stimulation, Anxiety, and Other Consequences
Brain Fatigue: Fundamental Solutions
Brain Fatigue 101
Astonishing Benefits of Cranberries
Summer Heat Stress – More Than Just Dehydration
Chronic Active Epstein Barr Virus: Additional Tools for the Battle
Pine Nut Oil Reduces Inflammation, Clotting Risk, and Fatty Liver Congestion
New Findings with Epstein Barr Virus: The Sleeping Giant
Type 1 Diabetes: Risk Factor Alert
Disrupted Gut Clocks Linked with IBS, GERD, Obesity, and Other GI Concerns
Body Clocks and Weight Management – It’s All About Timing
Saturated Fat Myth – Debunked Again
Powerful Nutrition for Common Chemical Exposures
Endocrine Disruptor Compounds and Natural Solutions
Endocrine Disruptor Compounds and Your Hormones
Low Blood Pressure Linked with Brain Atrophy
Vitamin K, Leptin, AGEs, and Arthritis
Advanced Solutions for Osteoarthritis
Osteoarthritis: Good Oils versus Bad Oils and Inflammation
High Levels of Omega 6 Fatty Acids Found in Bones of Osteoarthritis Patients Worsens Joint Breakdown
Lipoic Acid Protects the Heart and Immune System from Acute Emotional Stress
Whiplash, Thyroid, and Adrenals
Brain Inflammation Now Documented in Chronic Fatigue Syndrome
Brain Protective Effects of Proathocyanidins
Nutrient Highlight: Discover the Best Form of Folate
Lutein and Zeaxanthin Offset Gene Weaknesses that Cause Macular Degeneration
Lycopene Builds Its Anti-Prostate Cancer Case
Carotenes Improve the Quality of Semen
Vitamin B12 as Methylcobalamin Repairs Nerves & Lowers Pain
Folic Acid Activates Neural Stem Cells for Brain Rejuvenation
Chromium Improves Insulin Function & Reduces Binge Eating
How Fiber and Niacin Protect Against Colon Inflammation and Cancer
Berries Have Anti-Aging Impact on Immune System
Strawberries Reduce Cardiovascular Risk
Friendly Flora Improves Fatty Liver Disease
Flavonoid Intake Improves Cardio Health in At-Risk Men
Polyphenols and Essential Fatty Acids Reduce Cardio Risk in Overweight People
Vitamin C Reduces the Risk for Hemorrhagic Stroke
Testosterone Therapy Increases Heart Attack Risk
Magnesium Intake Linked to Lower Cardiovascular Inflammation
Q10 Boosts Energy, Nerves, Muscles & Metabolism
Coenzyme Q10 Remarkably Improves Circulation
Tyrosine Helps Maintain Mental Ability Under Stress
Green Tea Extract Lowers Blood Pressure, Cholesterol, Blood Sugar & Inflammation
Poor Flexibility is a Sign of Stiff Arteries
A Sluggish Lymph System Causes Snoring & Sleep Apnea
DHA is Vital to Cardiovascular Wellness
Magnesium Supplements Lower Blood Pressure, Prevent Calcification
Magnesium for the Prevention of Heart Disease
Pomegranate Protects HDL Cholesterol from Damage
Pomegranate Blocks Flu Replication
Tocotrienols:  Twenty Years of Dazzling Cardiovascular and Cancer Research
Is Resveratrol the Fountain of Youth?
Grape Seed Extract Lowers Blood Pressure
Scientists Tout Resveratrol as a Primary Nutrient for Cardio Health
Leptin, Thyroid, and Weight Loss
Excess Appetite Causes Abdominal Fat
Low Energy? Detect Thyroid Related Fatigue
Curcumin Boosts AMPK Activation, Prevents Fatty Liver
Quercetin Activates Mitochondrial Biogenesis
Quercetin Guards Against Inflammation-Induced Bone Loss
Head Injuries Double or Triple the Risk of Early Death
Fatty Fish Consumption Lowers the Risk of Type 2 Diabetes by 33%
Flavonoids Continue to Show Potent Diabetes Prevention
Vitamin K2 Decreases Bone Loss in Postmenopausal Women
Cissus Quadrangularis Enhances Fracture Healing
Cissus Quadrangularis Reduces Exercise-Related Joint Pain
Nobiletin and Tangeretin Help Protect Against Bone Loss
Nobiletin and Tangeretin Inhibit Respiratory Virus
Oregano Oil Inhibits Biofilm Formation
Bromelain Helps Chronic Sinus Inflammation
Curcumin Demonstrates Potent Anti-Flu Properties
Quercetin Protects Brain and Body from Low Oxygen Stress
Ubiquinol Q10 Protects Against Magnified Tissue Injury
Ubiquinol Q10 Protects Eyes of Diabetic Patients
Limonene Promotes Healing of Digestive Lining
Magnesium Intake Reduces Mortality
Fiber is Vital for Cardio Health
Friendly Flora Boosts Weight Loss in Obese Women
Tocotrienols Help Correct Fatty Liver in Humans
Vitamin E Boosts Quality of Life for Alzheimer’s Patients
Astaxanthin Demonstrates Brain Protection & Rejuvenation
Top 10 Health Stories of 2013
Resveratrol’s Amazing Anti-Aging Effect on Circulation
Grape Seed Extract Normalizes Blood Pressure in Mild Hypertension Patients
Don’t Let Bacterial Infections Set Up Shop
Viral Replication Fueled by Sugar
Anti-Vitamin Propaganda Hits a Fever Pitch
Antacid Medications Cause Vitamin B12 Deficiency, Speed Aging
Men Should Take Folic Acid Prior to Conception to Prevent Birth Defects
Exercise Potently Reduces the Risk for Diseases of Aging


Most Popular News:


Connect with Wellness Resources:

Connect on Facebook Follow us on Twitter Wellness Resources on Pinterest Wellness Resources YouTube Channel Get RSS News Feeds
Telecourse
bookstore
Thyroid and Metabolism
podcast
autoship