Gut Flora and Impaired Glucose Regulation

Byron's Comments:

An imbalanced gut contents is linked to blood sugar dysregulation as a major independent risk factor.

Study Title:

Gut metagenome in European women with normal, impaired and diabetic glucose control.

Study Abstract:

Type 2 diabetes (T2D) is a result of complex gene–environment interactions, and several risk factors have been identified, including age, family history, diet, sedentary lifestyle and obesity. Statistical models that combine known risk factors for T2D can partly identify individuals at high risk of developing the disease. However, these studies have so far indicated that human genetics contributes little to the models, whereas socio-demographic and environmental factors have greater influence1. Recent evidence suggests the importance of the gut microbiota as an environmental factor, and an altered gut microbiota has been linked to metabolic diseases including obesity2, 3, diabetes4 and cardiovascular disease5. Here we use shotgun sequencing to characterize the faecal metagenome of 145 European women with normal, impaired or diabetic glucose control. We observe compositional and functional alterations in the metagenomes of women with T2D, and develop a mathematical model based on metagenomic profiles that identified T2D with high accuracy. We applied this model to women with impaired glucose tolerance, and show that it can identify women who have a diabetes-like metabolism. Furthermore, glucose control and medication were unlikely to have major confounding effects. We also applied our model to a recently described Chinese cohort4 and show that the discriminant metagenomic markers for T2D differ between the European and Chinese cohorts. Therefore, metagenomic predictive tools for T2D should be specific for the age and geographical location of the populations studied.

From press release:

Intestinal bacteria may have a greater influence on us than was previously thought. In a study published in the journal Nature on 29 May, researchers at the Sahlgrenska Academy, University of Gothenburg, Sweden and Chalmers University of Technology, Sweden, show that patients with type 2 diabetes have an altered gut microbiota. Their findings have led to a new model to identify patients at increased risk of developing diabetes.

The human body contains ten times more bacteria than human cells. Most of these bacteria comprise the normal gut microbiota. Our bodies thus contain a vast number of bacterial genes in addition to the genes in our own cells, and are collectively known as the metagenome.

Three Swedish, Gothenburg-based research groups led by Fredrik Bäckhed and Björn Fagergberg, Sahlgrenska Academy, University of Gothenburg, and Jens Nielsen of Chalmers University of Technology compared the metagenome of 145 women with diabetes, impaired glucose tolerance and healthy controls, and showed that women with type 2 diabetes have an altered gut microbiota.

Furthermore, healthy women have higher numbers of gut bacteria known to be producers of butyrate, a fatty acid that has previously been linked to beneficial health effect.

On the basis of these findings, the researchers developed a new model that can distinguish between patients with type 2 diabetes and healthy women by analysis of the metagenome. This model has better predictive value than the classical predictive markers used today, such as body-mass index and waist-hip ratio.

“By examining the patient’s gut microbiota, we could predict which patients are at risk of developing diabetes. The big challenge is to find out whether the composition of the gut microbiota promotes the onset of age-related diabetes. If this is the case, this would indicate new opportunities to prevent the disease,” says Professor Fredrik Bäckhed.

“In this study, we have developed new methods to analyze the metagenomic data and have been able to exploit much more of the ‘unknown’ metagenome, that is, the bacteria that have not been previously mapped,” continues Jens Nielsen, Professor of Systems Biology at Chalmers University of Technology. “The study is an excellent example of how novel technologies, developed in connection with Chalmers’ initiative in life science, can assist in analyzing large amounts of data from the clinic.”

 

Study Information:

Fredrik H. Karlsson, Valentina Tremaroli, Intawat Nookaew, Göran Bergström, Carl Johan Behre, Björn Fagerberg, Jens Nielsen, Fredrik Bäckhed Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013 May 
The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden




Related Entries: Glaucoma: Protecting Against a Silent, Devastating Disorder
Protect and Energize Your Immune System
GMOs, Roundup, and Sunscreen Linked with Diminished Brain Resiliency
Signs of Concussions and Mild Traumatic Brain Injury
Sleep – Molecular Clean Up Time for the Brain
Artificial Sweeteners Provoke High Risk for Diabetes
Hypothyroidism, Brain Stress, and Season Changes
Alcohol, Adolescents, and Young Adults – A Neurological Disaster Waiting to Happen
GABA: Managing Brain Stimulation, Anxiety, and Other Consequences
Brain Fatigue: Fundamental Solutions
Brain Fatigue 101
Astonishing Benefits of Cranberries
Summer Heat Stress – More Than Just Dehydration
Chronic Active Epstein Barr Virus: Additional Tools for the Battle
Pine Nut Oil Reduces Inflammation, Clotting Risk, and Fatty Liver Congestion
New Findings with Epstein Barr Virus: The Sleeping Giant
Type 1 Diabetes: Risk Factor Alert
Disrupted Gut Clocks Linked with IBS, GERD, Obesity, and Other GI Concerns
Body Clocks and Weight Management – It’s All About Timing
Saturated Fat Myth – Debunked Again
Powerful Nutrition for Common Chemical Exposures
Endocrine Disruptor Compounds and Natural Solutions
Endocrine Disruptor Compounds and Your Hormones
Low Blood Pressure Linked with Brain Atrophy
Vitamin K, Leptin, AGEs, and Arthritis
Advanced Solutions for Osteoarthritis
Osteoarthritis: Good Oils versus Bad Oils and Inflammation
High Levels of Omega 6 Fatty Acids Found in Bones of Osteoarthritis Patients Worsens Joint Breakdown
Lipoic Acid Protects the Heart and Immune System from Acute Emotional Stress
Whiplash, Thyroid, and Adrenals
Brain Inflammation Now Documented in Chronic Fatigue Syndrome
Brain Protective Effects of Proathocyanidins
Nutrient Highlight: Discover the Best Form of Folate
Lutein and Zeaxanthin Offset Gene Weaknesses that Cause Macular Degeneration
Lycopene Builds Its Anti-Prostate Cancer Case
Carotenes Improve the Quality of Semen
Vitamin B12 as Methylcobalamin Repairs Nerves & Lowers Pain
Folic Acid Activates Neural Stem Cells for Brain Rejuvenation
Chromium Improves Insulin Function & Reduces Binge Eating
How Fiber and Niacin Protect Against Colon Inflammation and Cancer
Berries Have Anti-Aging Impact on Immune System
Strawberries Reduce Cardiovascular Risk
Friendly Flora Improves Fatty Liver Disease
Flavonoid Intake Improves Cardio Health in At-Risk Men
Polyphenols and Essential Fatty Acids Reduce Cardio Risk in Overweight People
Vitamin C Reduces the Risk for Hemorrhagic Stroke
Testosterone Therapy Increases Heart Attack Risk
Magnesium Intake Linked to Lower Cardiovascular Inflammation
Q10 Boosts Energy, Nerves, Muscles & Metabolism
Coenzyme Q10 Remarkably Improves Circulation
Tyrosine Helps Maintain Mental Ability Under Stress
Green Tea Extract Lowers Blood Pressure, Cholesterol, Blood Sugar & Inflammation
Poor Flexibility is a Sign of Stiff Arteries
A Sluggish Lymph System Causes Snoring & Sleep Apnea
DHA is Vital to Cardiovascular Wellness
Magnesium Supplements Lower Blood Pressure, Prevent Calcification
Magnesium for the Prevention of Heart Disease
Pomegranate Protects HDL Cholesterol from Damage
Pomegranate Blocks Flu Replication
Tocotrienols:  Twenty Years of Dazzling Cardiovascular and Cancer Research
Is Resveratrol the Fountain of Youth?
Grape Seed Extract Lowers Blood Pressure
Scientists Tout Resveratrol as a Primary Nutrient for Cardio Health
Leptin, Thyroid, and Weight Loss
Excess Appetite Causes Abdominal Fat
Low Energy? Detect Thyroid Related Fatigue
Curcumin Boosts AMPK Activation, Prevents Fatty Liver
Quercetin Activates Mitochondrial Biogenesis
Quercetin Guards Against Inflammation-Induced Bone Loss
Head Injuries Double or Triple the Risk of Early Death
Fatty Fish Consumption Lowers the Risk of Type 2 Diabetes by 33%
Flavonoids Continue to Show Potent Diabetes Prevention
Vitamin K2 Decreases Bone Loss in Postmenopausal Women
Cissus Quadrangularis Enhances Fracture Healing
Cissus Quadrangularis Reduces Exercise-Related Joint Pain
Nobiletin and Tangeretin Help Protect Against Bone Loss
Nobiletin and Tangeretin Inhibit Respiratory Virus
Oregano Oil Inhibits Biofilm Formation
Bromelain Helps Chronic Sinus Inflammation
Curcumin Demonstrates Potent Anti-Flu Properties
Quercetin Protects Brain and Body from Low Oxygen Stress
Ubiquinol Q10 Protects Against Magnified Tissue Injury
Ubiquinol Q10 Protects Eyes of Diabetic Patients
Limonene Promotes Healing of Digestive Lining
Magnesium Intake Reduces Mortality
Fiber is Vital for Cardio Health
Friendly Flora Boosts Weight Loss in Obese Women
Tocotrienols Help Correct Fatty Liver in Humans
Vitamin E Boosts Quality of Life for Alzheimer’s Patients
Astaxanthin Demonstrates Brain Protection & Rejuvenation
Top 10 Health Stories of 2013
Resveratrol’s Amazing Anti-Aging Effect on Circulation
Grape Seed Extract Normalizes Blood Pressure in Mild Hypertension Patients
Don’t Let Bacterial Infections Set Up Shop
Viral Replication Fueled by Sugar
Anti-Vitamin Propaganda Hits a Fever Pitch
Antacid Medications Cause Vitamin B12 Deficiency, Speed Aging
Men Should Take Folic Acid Prior to Conception to Prevent Birth Defects
Exercise Potently Reduces the Risk for Diseases of Aging


Most Popular News:


Connect with Wellness Resources:

Connect on Facebook Follow us on Twitter Wellness Resources on Pinterest Wellness Resources YouTube Channel Get RSS News Feeds
Telecourse
bookstore
Thyroid and Metabolism
podcast
autoship