Carbohydrate Restriction Improves Fatty Liver

Byron's Comments:

Reducing carbo intake helps encourage fat burning, including the disposal of excess liver fat.

Study Title:

Alterations in hepatic glucose and energy metabolism as a result of calorie and carbohydrate restriction†

Study Abstract:

Carbohydrate restriction is a common weight-loss approach that modifies hepatic metabolism by increasing gluconeogenesis (GNG) and ketosis. Because little is known about the effect of carbohydrate restriction on the origin of gluconeogenic precursors (GNG from glycerol [GNGglycerol] and GNG from lactate/amino acids [GNGphosphoenolpyruvate {PEP}]) or its consequence to hepatic energy homeostasis, we studied these parameters in a group of overweight/obese subjects undergoing weight-loss via dietary restriction. We used 2H and 13C tracers and nuclear magnetic resonance spectroscopy to measure the sources of hepatic glucose and tricarboxylic acid (TCA) cycle flux in weight-stable subjects (n = 7) and subjects following carbohydrate restriction (n = 7) or calorie restriction (n = 7). The majority of hepatic glucose production in carbohydrate restricted subjects came from GNGPEP. The contribution of glycerol to GNG was similar in all groups despite evidence of increased fat oxidation in carbohydrate restricted subjects. A strong correlation between TCA cycle flux and GNGPEP was found, though the reliance on TCA cycle energy production for GNG was attenuated in subjects undergoing carbohydrate restriction. Together, these data imply that the TCA cycle is the energetic patron of GNG. However, the relationship between these two pathways is modified by carbohydrate restriction, suggesting an increased reliance of the hepatocyte on energy generated outside of the TCA cycle when GNGPEP is maximal. Conclusion: Carbohydrate restriction modifies hepatic GNG by increasing reliance on substrates like lactate or amino acids but not glycerol. This modification is associated with a reorganization of hepatic energy metabolism suggestive of enhanced hepatic β-oxidation. (HEPATOLOGY 2008;48:1487–1496.)

Since the seminal observation of Keys1 in 1980, the recommended diet in the United States has been the low-calorie, low-fat diet. This diet originated primarily as an inexpensive approach to prevent cardiovascular disease but has now become the recommended treatment for overweight and obesity in clinical practice.2 Despite the success of clinicians and the U.S. Public Health Service in reducing the U.S. population’s fat intake and increasing its carbohydrate intake over the past 30 years, the prevalence of obesity has continued to rise.3, 4 During this same period, metabolic liver disease has become increasingly prevalent, taking the form of excess triglyceride accumulation in the liver that can result in inflammation, fibrosis, and cirrhosis.5, 6 The transition of this type of liver disease, known as nonalcoholic fatty liver disease (NAFLD), from relatively bland, inactive steatosis to a more morbid inflammatory condition, termed nonalcoholic steatohepatitis, occurs in a subset of individuals. The reason this transition takes place is unclear; however, some investigators have found a strong association between dietary carbohydrate intake and severity of both steatosis and steatohepatitis.7, 8 Current evidence suggests that a high carbohydrate diet leads to increased hepatic de novo lipogenesis,9 likely as the result of the molecular mediators carbohydrate and sterol response element binding protein.5 Such an increase in hepatic fat synthesis would be anticipated to be associated with hepatic steatosis; however, the connection between carbohydrate intake and inflammatory activity remains elusive. The changes in hepatic metabolism and energy production that occur as a consequence of changes in dietary carbohydrate intake may be important in the pathogenesis and progression of NAFLD.

Several studies have used stable isotopes to investigate the impact of carbohydrate intake on hepatic glucose metabolism.10–12 These studies clearly show that low-carbohydrate diets result in a reorganization of hepatic glucose production by changing the rate of glycogenolysis and, to a lesser degree, the rate of gluconeogenesis (GNG). However, little is known about the effect of carbohydrate restriction on the origin of gluconeogenic precursors (GNG from lactate/amino acids or glycerol) or its consequence on hepatic energy homeostasis. There is an empirical relationship between GNG and tricarboxylic acid (TCA) cycle flux13: suppressed rates of GNG result in impaired hepatic TCA cycle flux,14, 15 while increased GNG is accompanied by elevated TCA cycle flux.16 This relationship appears to be an “energetic rheostat,” allowing the liver to match energy production with the requirements of GNG. If the increased rates of GNG observed during carbohydrate restriction are the result of increased conversion of lactate/amino acids to glucose, energy production at the level of the TCA cycle may be altered in a coordinated manner.

To gain a better understanding of hepatic energy production and its relationship to GNG under conditions of varied macronutrient intake, we used 2H and 13C tracers combined with nuclear magnetic resonance (NMR) spectroscopy17 to simultaneously assess endogenous glucose production (EGP), glycogenolysis, GNG from lactate/amino acids (GNGphosphoenolpyruvate [PEP]), GNG from glycerol (GNGglycerol) pyruvate cycling, and TCA cycle flux in human subjects following a carbohydrate restricted or calorie restricted diet.

Study Information:

Jeffrey D. Browning, Brian Weis, Jeannie Davis, Santhosh Satapati, Matthew Merritt, Craig R. Malloy, Shawn C. Burgess. Alterations in hepatic glucose and energy metabolism as a result of calorie and carbohydrate restriction† Hepatology 2008 November 

Full Study:

Related Entries: Cinnamon Provides Impressive Benefits for Blood Sugar, Heart Health, Inflammation and More
Gastric Bypass Nutritional Consequences
Toxic Mineral Linked with Bowel Inflammation, Mitochondrial Damage, and Alzheimer’s
Magnesium and Vitamin B1 - Team Players Needed for Brain, Muscles, Metabolism, and More
Vitamin B1 / Thiamin - Are you getting enough?
H. Pylori and Autoimmune Link
Common Medications That Rob the Body of Nutrients
The Many Faces of Gluten Intolerance
Supplement Quality - Are You Getting What’s On the Label?
Statin Drugs Cause Atherosclerosis and Heart Failure
Heart Disease and Depression: A Two Way Street
Broken Heart Syndrome
Ten Things that Interfere with Thyroid Function
Vaccine Injury with Chronic Fatigue Syndrome and Fibromyalgia
Bone Loss Caused by Thyroid Meds and Other Drugs
Five Key Tips for a Healthy 2015
Top Health Stories of 2014
Combat the Winter Blues
Carnosine – Amazing Benefits for Athletes, Heart, Brain, Eyes, and Diabetes
ADT Prostate Cancer Therapy Does More Harm Than Good
Musicians: A Note on Taking Care of the Body
Infections Linked to Autoimmune Thyroid Problems
Noni: Tropical Super Fruit – Powerful Support for the Immune System, Brain, Bones, and more
Enlarged Adenoids Linked with Food Allergies
Combat Ear Infections and Congestion Naturally
Glaucoma: Protecting Against a Silent, Devastating Disorder
Protect and Energize Your Immune System
GMOs, Roundup, and Sunscreen Linked with Diminished Brain Resiliency
Signs of Concussions and Mild Traumatic Brain Injury
Sleep – Molecular Clean Up Time for the Brain
Artificial Sweeteners Provoke High Risk for Diabetes
Hypothyroidism, Brain Stress, and Season Changes
Alcohol, Adolescents, and Young Adults – A Neurological Disaster Waiting to Happen
GABA: Managing Brain Stimulation, Anxiety, and Other Consequences
Brain Fatigue: Fundamental Solutions
Brain Fatigue 101
Astonishing Benefits of Cranberries
Summer Heat Stress – More Than Just Dehydration
Chronic Active Epstein Barr Virus: Additional Tools for the Battle
Pine Nut Oil Reduces Inflammation, Clotting Risk, and Fatty Liver Congestion
New Findings with Epstein Barr Virus: The Sleeping Giant
Type 1 Diabetes: Risk Factor Alert
Disrupted Gut Clocks Linked with IBS, GERD, Obesity, and Other GI Concerns
Body Clocks and Weight Management – It’s All About Timing
Saturated Fat Myth – Debunked Again
Powerful Nutrition for Common Chemical Exposures
Endocrine Disruptor Compounds and Natural Solutions
Endocrine Disruptor Compounds and Your Hormones
Low Blood Pressure Linked with Brain Atrophy
Vitamin K, Leptin, AGEs, and Arthritis
Advanced Solutions for Osteoarthritis
Osteoarthritis: Good Oils versus Bad Oils and Inflammation
High Levels of Omega 6 Fatty Acids Found in Bones of Osteoarthritis Patients Worsens Joint Breakdown
Lipoic Acid Protects the Heart and Immune System from Acute Emotional Stress
Whiplash, Thyroid, and Adrenals
Brain Inflammation Now Documented in Chronic Fatigue Syndrome
Brain Protective Effects of Proathocyanidins
Nutrient Highlight: Discover the Best Form of Folate
Lutein and Zeaxanthin Offset Gene Weaknesses that Cause Macular Degeneration
Lycopene Builds Its Anti-Prostate Cancer Case
Carotenes Improve the Quality of Semen
Vitamin B12 as Methylcobalamin Repairs Nerves & Lowers Pain
Folic Acid Activates Neural Stem Cells for Brain Rejuvenation
Chromium Improves Insulin Function & Reduces Binge Eating
How Fiber and Niacin Protect Against Colon Inflammation and Cancer
Berries Have Anti-Aging Impact on Immune System
Strawberries Reduce Cardiovascular Risk
Friendly Flora Improves Fatty Liver Disease
Flavonoid Intake Improves Cardio Health in At-Risk Men
Polyphenols and Essential Fatty Acids Reduce Cardio Risk in Overweight People
Vitamin C Reduces the Risk for Hemorrhagic Stroke
Testosterone Therapy Increases Heart Attack Risk
Magnesium Intake Linked to Lower Cardiovascular Inflammation
Q10 Boosts Energy, Nerves, Muscles & Metabolism
Coenzyme Q10 Remarkably Improves Circulation
Tyrosine Helps Maintain Mental Ability Under Stress
Green Tea Extract Lowers Blood Pressure, Cholesterol, Blood Sugar & Inflammation
Poor Flexibility is a Sign of Stiff Arteries
A Sluggish Lymph System Causes Snoring & Sleep Apnea
DHA is Vital to Cardiovascular Wellness
Magnesium Supplements Lower Blood Pressure, Prevent Calcification
Magnesium for the Prevention of Heart Disease
Pomegranate Protects HDL Cholesterol from Damage
Pomegranate Blocks Flu Replication
Tocotrienols:  Twenty Years of Dazzling Cardiovascular and Cancer Research
Is Resveratrol the Fountain of Youth?
Grape Seed Extract Lowers Blood Pressure
Scientists Tout Resveratrol as a Primary Nutrient for Cardio Health
Leptin, Thyroid, and Weight Loss
Excess Appetite Causes Abdominal Fat

Most Popular News:

Connect with Wellness Resources:

Connect on Facebook Follow us on Twitter Wellness Resources on Pinterest Wellness Resources YouTube Channel Get RSS News Feeds
Thyroid and Metabolism